Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair

نویسندگان

  • Martijn S. Luijsterburg
  • Gesa von Bornstaedt
  • Audrey M. Gourdin
  • Antonio Z. Politi
  • Martijn J. Moné
  • Daniël O. Warmerdam
  • Joachim Goedhart
  • Wim Vermeulen
  • Roel van Driel
  • Thomas Höfer
چکیده

To understand how multiprotein complexes assemble and function on chromatin, we combined quantitative analysis of the mammalian nucleotide excision DNA repair (NER) machinery in living cells with computational modeling. We found that individual NER components exchange within tens of seconds between the bound state in repair complexes and the diffusive state in the nucleoplasm, whereas their net accumulation at repair sites evolves over several hours. Based on these in vivo data, we developed a predictive kinetic model for the assembly and function of repair complexes. DNA repair is orchestrated by the interplay of reversible protein-binding events and progressive enzymatic modifications of the chromatin substrate. We demonstrate that faithful recognition of DNA lesions is time consuming, whereas subsequently, repair complexes form rapidly through random and reversible assembly of NER proteins. Our kinetic analysis of the NER system reveals a fundamental conflict between specificity and efficiency of chromatin-associated protein machineries and shows how a trade off is negotiated through reversibility of protein binding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for the recruitment of ERCC1-XPF to nucleotide excision repair complexes by XPA.

The nucleotide excision repair (NER) pathway corrects DNA damage caused by sunlight, environmental mutagens and certain antitumor agents. This multistep DNA repair reaction operates by the sequential assembly of protein factors at sites of DNA damage. The efficient recognition of DNA damage and its repair are orchestrated by specific protein-protein and protein-DNA interactions within NER compl...

متن کامل

Identification of a Multiprotein Dna Metabolic Complex from a Radioresistant Bacterium Deinococcus Radiodurans

Deinococcus radiodurans R1 (DEIRA) a member of Deinococcae family can survive ~12 kGy dose of γ radiation which can generate about 200 double strands and 3000 single strand breaks per genome. An efficient DNA strand break repair, contributes maximum to the radioresistance of Deinococcus radiodurans. Distinction in DNA strand break repair from others seems to lie in the mechanism of action of DN...

متن کامل

Mammalian Base Excision Repair: Functional Partnership between PARP-1 and APE1 in AP-Site Repair

The apurinic/apyrimidinic- (AP-) site in genomic DNA arises through spontaneous base loss and base removal by DNA glycosylases and is considered an abundant DNA lesion in mammalian cells. The base excision repair (BER) pathway repairs the AP-site lesion by excising and replacing the site with a normal nucleotide via template directed gap-filling DNA synthesis. The BER pathway is mediated by a s...

متن کامل

Radiosensitivity and Repair Kinetics of Gamma-Irradiated Leukocytes from Sporadic Prostate Cancer Patients and Healthy Individuals Assessed by Alkaline Comet Assay

Background: Impaired DNA repair mechanism is one of the main causes of tumor genesis. Study of intrinsic radiosensitivity of cancer patients in a non-target tissue (e.g. peripheral blood) might show the extent of DNA repair deficiency of cells in affected individuals and might be used a predictor of cancer predisposition. Methods: Initial radiation-induced DNA damage (ratio of Tail DNA/Head DN...

متن کامل

ZRF1 mediates remodeling of E3 ligases at DNA lesion sites during nucleotide excision repair

Faithful DNA repair is essential to maintain genome integrity. Ultraviolet (UV) irradiation elicits both the recruitment of DNA repair factors and the deposition of histone marks such as monoubiquitylation of histone H2A at lesion sites. Here, we report how a ubiquitin E3 ligase complex specific to DNA repair is remodeled at lesion sites in the global genome nucleotide excision repair (GG-NER) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 189  شماره 

صفحات  -

تاریخ انتشار 2010